TABLE I

Summary of Available Optical High Pressure Cells

Type of Cell	Pressures		Advantages		Disadvantages
Shock Wave	1000 kbar	1)	Highest obtainable pressures	1)	Pressure exerted over short time
Piston and Cylinder	200 kbar	1)	Largest specimen volumes	1)	Not enough optical clarity to permit optical observation or photography
		2)	Considered to give hydrostatic pres- sures	2)	Specimen may inter- act with salt matrix
				3)	Must be calibrated with respect to pressures measured in a different type of cell
Opposed Anvils (Diamonds)	200 kbar	1)	Micro-quantities of material necessary	1)	Pressure gradient exists
		2)	Compactcan be used with spectro- photometers	2)	Absorption of diamonds from 4-6 μ

453

TABLE II

High Pressure Apparatus Currently Used for Low Frequency Studies

Workers	Spectrophotometer or Interferometer	Wavelength Range μ	Optical Cell
Weir, Van Valkenburg, and Lippincott ³⁻⁵	Commercial double- beam spectrophoto- meter with beam con- denser	2-35	Diamond Anvil
Jacobsen and Brasch ¹⁵⁻¹⁶	Perkin-Elmer No. 521*	2-35	Diamond Anvil
Ferraro, Mitra and Postmus ⁶⁻⁷	Perkin-Elmer No. 301 [*] Beckman IR-11 ^{**} Beckman IR-12 ^{**}	16-200 16-200 2-40	Diamond Anvil
McDevitt, Witkowski, and Fateley9	FS-520 interferometer	tc 250	Diamond Anvil
Bradley, Gebbie et al. ⁸	Michelson interfero- meter	50-1000	Anvil, quartz window

*With 6x beam condenser.

**With 8x beam condenser, (see L. Basile, et al. Spec. Letters, 1(5), 189 (1968)).

NOTE: For operation to 200 μ with a grating spectrophotometer, a cost of about \$12,000 is necessary for a beam condenser and the diamond cell.

J. R. Ferraro